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A comprehensive adaptive compensation control strategy based on feedback linearization design is proposed for multivariable
nonlinear systems with uncertain actuator fault and unknown mismatched disturbances. Firstly, the linear dynamic system is
obtained through nonlinear feedback linearization, and the dynamic model of the mismatched disturbances as well as its
relevance to the nonlinear system is given. The effect of disturbances on the system output is suppressed with the basic
controller of the linearized system. Then, a direct adaptive controller is developed for the multiple uncertain actuator faults.
Finally, an integrated algorithm based on adaptive weighted fusion could provide an effective compensation for the effect of
multiple uncertain faults and mismatched disturbances. Thus, the stability and asymptotic tracking performance of the closed-
loop system are ensured. The feasibility and performance of the proposed control strategy are validated by the numerical
simulation results.

1. Introduction

Actuator faults are common in performance-critical systems.
The occurrence of faults will cause severe deterioration in
performance or even catastrophic problems of system insta-
bility. Actuator faults are featured with multiple essential
uncertainties, including the fault mode, time, value, and type.
Therefore, it is necessary to develop the effective fault-
tolerant control technology to address the problem associ-
ated with the multiple uncertainties of actuator faults, so as
to sustain reliability and safety of the closed-loop system.

In recent years, the problem of actuator faults compensa-
tion control has attracted more and more attention. A variety
of control methods are tested with several profound achieve-
ments. Many effective fault-tolerant control methods were
reviewed in literatures [1–5]. Multimodel adaptive control
methods were employed as a fault compensation in litera-
tures [6–8]. Literatures [9–11] applied neural network to
the design of reconfigurable aircraft control in the case of

sensors or actuator faults. The fault recognition and fault-
tolerant control strategies of the near space vehicle are
designed base on the adaptive sliding mode control method
in reference [12]. For the spacecraft attitude control system
with external disturbances, two kinds of effective fault-
tolerant control method were proposed in literature [13].
To enhance the overall performance of the multisensor mea-
surement system and reduce the influence of faults of each
sensor on the system, a new multisensor information fusion
design framework was proposed in reference [14]. Fault
detection and diagnosis methods are also widely used to for
the problems of component faults in the control system
[15]. In literatures [16, 17], the adaptive observer design
was used to reconstruct actuator faults and a fault-tolerant
controller was designed based on estimated information for
fault. Besides, adaptive control is also an effective tool with
widespread application in fault-tolerant control for both lin-
ear and nonlinear systems [18–21]. Although great practical
progress has been made in actuator fault compensation for
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the nonlinear system, there are still many unresolved prob-
lems for control system with uncertain dynamics and actua-
tor faults. For example, the problems of multiple-actuator
fault compensation control in the general nonlinear system
can be further investigated to improve closed-loop system
stability and asymptotic tracking control.

The so-called feedback linearized system refers to a
kind of nonlinear system linearized by appropriate nonlin-
ear feedback control [22]. Based on the feedback lineariza-
tion, the control objectives such as models match, pole
assignment, and tracking can be further realized. Refer-
ences [23, 24] combined feedback linearization theory with
adaptive control and effectively solved the parameter
uncertainty and fault-tolerant control problems of nonlin-
ear systems. In addition, the performance of the controlled
system suffers from quite different influences due to the
various disturbances during the actual operation of the
nonlinear system. Therefore, the disturbance suppression
problems should be given adequate attention. In literatures
[25–27], disturbance decoupling for the measurable distur-
bances in linear systems provides a potential approach for
disturbance suppression problems. However, this method
is not suitable for nonmeasurable disturbances. The robust
control method is proposed for the nonmeasurable distur-
bances in literatures [28, 29], without implementation for
control objective of asymptotic tracking. The disturbances
suppression method based on adaptive control design
can effectively estimate the unknown system parameters
and disturbance parameters. In literature [30], the adaptive
internal model control method was applied in the space-
craft system to realize the attitude tracking with external
disturbances. For general hypersonic vehicles with uncer-
tain system parameters and external disturbances, a new
sliding mode control method was proposed in literature
[31]. The problem of asymptotic tracking of nonlinear sys-
tems under sinusoidal disturbances was investigated in lit-
erature [32]. And a disturbance suppression algorithm was
proposed for single-input single-output nonlinear systems,
but the algorithm is inappropriate for multi-input multi-
output nonlinear systems with mismatched disturbances.
In addition, the suppression of mismatched disturbances
in multi-input and multioutput nonlinear systems were
studied in literatures [33–35].

Unknown disturbances and uncertain actuator faults
may occur simultaneously in the actual operation, which
increases the difficulties in asymptotic tracking control for
multi-input and multioutput nonlinear systems. Although
some theoretical achievements have been made in distur-
bance suppression and actuator fault compensation for
multi-input and multioutput nonlinear systems, some critical
problems are left open. The problem of unmatched distur-
bance suppression in nonlinear systems with uncertain mul-
tivariable is solved in literature [35]. On this basis, the
problem of multiple uncertain actuator fault compensation
and mismatched input disturbance suppression is further
studied in this paper for the case of a feedback linearized
multivariable nonlinear systems. Compared with some avail-
able fault-tolerant control methods, the currently proposed
control method presents the following improvement: (1) a

new adaptive actuator failure compensation and disturbance
rejection scheme with relaxed design conditions is designed
for general multivariable nonlinear systems; (2) a new com-
posite fault-tolerant control approach is developed to handle
a set of uncertain actuator failures, by using a complete
parametrization for estimation of both the failure pattern
parameters and the failure value parameters; (3) an adap-
tive disturbance rejection scheme is developed in details,
including error equations, adaptive laws, and stability anal-
ysis, for multivariable nonlinear systems with uncertainties
from both the actuator failure and unmatched disturbances,
such that desired closed-loop performances are ensured
including signals boundedness and asymptotic output
tracking; and (4) an important aircraft flight control appli-
cation is conducted.

2. Problem Description and
Knowledge Preparation

This chapter first describes the problem of actuator fault
compensation and disturbance suppression of the systems
with redundant actuators and then introduces some basic
concepts involved in this paper.

2.1. Control Problem Statement. Consider the nonlinear sys-
tem as below

_x = f xð Þ + g xð Þu + p xð Þd tð Þ ð1Þ

y = h xð Þ, ð2Þ

where x ∈ Rn is state vector, y = ½y1, y2,⋯, yq�T ∈ Rq is system

output, u = ½u1, u2,⋯, um�T ∈ Rm:is system input, and dðtÞ ∈
Rp is the uncertain external disturbance. f ðxÞ ∈ Rn, gðxÞ =
½g1ðxÞ, g2ðxÞ,⋯, gmðxÞ� ∈ Rn×m, pðxÞ ∈ Rn×p, and hðxÞ ∈ Rq

are known.

2.1.1. Actuator Fault Model. The classical model of the actu-
ator fault can be represented as [19]

uj tð Þ = �uj tð Þ = �uj0 + 〠
qj

i=1
�uji f ji tð Þ, t ≥ t j, ð3Þ

where j ∈ f1, 2,⋯,mg, t j > 0, ¯�uj0, and �uji represent the
parameters of the uncertain fault. f jiðtÞ, i = 1, 2,⋯, qj are
known. The fault model (3) is written in the following
parameterized form

�uj tð Þ = θTj ϖj tð Þ, ð4Þ

where θj = ½�uj0, �uj1,⋯, �uj qj
�T ∈ Rqj+1, ϖjðtÞ = ½1, f j1ðtÞ,⋯,

f jqjðtÞ�
T ∈ Rqj+1:When the uncertain actuator fault occurs in

the system, the actual input uðtÞ acting on the system can
be expressed as

u tð Þ = I − σ tð Þð Þv tð Þ + σ tð Þ�u tð Þ, ð5Þ
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where vðtÞ is the control input signal to be designed. �uðtÞ =
½�u1ðtÞ, �u2ðtÞ,⋯, �umðtÞ�T . σðtÞ = diagfσ1ðtÞ, σ2ðtÞ,⋯, σmðtÞg
is the corresponding actuator fault mode matrix. If the j actu-
ator fails, then σiðtÞ = 1; otherwise, σiðtÞ = 0. Considering
actuator fault (5), the system model can be expressed as

_x = f xð Þ + g xð Þσ tð Þ�u tð Þ + g xð Þ 1 − σ tð Þð Þv tð Þ + p xð Þd tð Þ
y = h xð Þ:

ð6Þ

2.1.2. External Disturbance Model. The disturbance term
pðxÞdðtÞ in this paper has the following characteristics:
(1) pðxÞ ≠ gðxÞα α ∈ Rm×p indicates that the disturbance
signal dðtÞ is incompatible with the control signal uðtÞ;
(2) the component of the disturbance vector dðtÞ =
½d1ðtÞ, d2ðtÞ,⋯, dpðtÞ�p ∈ Rp can be expressed as [36]:

dj tð Þ = dj0 + 〠
qj

k=1
djkΦjk tð Þ, j = 1, 2,⋯, p, ð7Þ

and it also can be rewritten in the parameterized form as

dj tð Þ = θ∗Tdj ϖdj tð Þ, ð8Þ

where θ∗Tdj = ½dj0, dj1,⋯, dj qj
� ∈ Rqj+1, ϖdjðtÞ = ½1,Φj1ðtÞ,⋯,

Φjqj
ðtÞ�T ∈ Rqj+1, j = 1, 2,⋯, p, dj0,and djk are unknown

while ΦjkðtÞ are known. By selecting appropriate qj and
basic function ΦjkðtÞ, the disturbance model (7) can offer
an approximate description for many practical disturbance
signals, such as constant value, sinusoidal signal, and non-
sinusoidal time-varying disturbance.

Remark 1. When the disturbance is consistent with the con-
trol input, i.e., pðxÞ = gðxÞα and α ∈ Rm×p, the control signal
can be derived as uðtÞ = u1ðtÞ + u2ðtÞ, where u1ðtÞ is the basic
control variable that can stabilize the nonlinear multivariable
system, and u2ðtÞ = −αdðtÞ is the disturbance suppression
component. Without such match, i.e., pðxÞ ≠ gðxÞα and α ∈
Rm×p, the above control method cannot eliminate the influ-
ence of disturbances. Therefore, a new control input uðtÞ
needs to be designed to suppress disturbance.

2.1.3. Control Objective. For system (1) with uncertain actua-
tor faults (3) up tom − qaq ≤ qa ≤m and unmatched external
disturbance dðtÞ, the number of the faults depends on the
actual application. In this paper, qa =m − 1. That is, the total
actuator faults are no more thanm − qa = 1, but it is impossi-
ble to identify in advance the exact amount of faults. The
actuator fault compensation method designed in this case
can be applied to the problem of simultaneous or alternating
faults of multiple actuators. The mathematical expressions of
the corresponding fault modes are

σ 1ð Þ = diag 0, 0,⋯, 0f g, σ 2ð Þ = diag 1, 0,⋯, 0f g: ð9Þ

In this paper, a fault compensation control algorithm is
developed based on the following assumptions to achieve
the above control objectives.

Assumption 2.When at most one actuator of system (1) fails
and the fault information is available, it is still possible to
design effective control methods to adjust the residual actua-
tors adaptively so that the system still fulfills the desired con-
trol objective.

The goal of this paper is to design an adaptive control-
ler vðtÞ to solve the issue due to multiple uncertainties of
faults and disturbances, especially the uncertain fault
mode, in order to guarantee the stability of the closed-
loop system and asymptotical tracking performance of sys-
tem output.

2.2. Feedback Linearization. For a multi-input and multiout-
put nonlinear system

_x = f xð Þ + g xð Þu, y = h xð Þ ð10Þ

where u ∈ Rm, y ∈ Rq.

Assumption 3. Supposing the correlation vector as fρ1, ρ2,
⋯, ρqg, 1 ≤ ρi ≤ n in a neighborhood Ω0 at x0 ∈ Rn, if for ∀x
∈Ω0, Lgj

Lkf hiðxÞ = 0, 1 ≤ j ≤m, 0 ≤ k < ρi − 1, 1 ≤ i ≤ q, and

Lgj
Lρi−1f hiðx0Þ ≠ 0 for j ∈ f1, 2,⋯,mg.

Similarly, for a nonlinear system with input disturbances

_x = f xð Þ + p xð Þd tð Þ, y = h xð Þ, ð11Þ

where dðtÞ ∈ Rp, y ∈ Rq, and it has a correlation set fν1, ν2,
⋯, νqg, 1 ≤ νi ≤ n. The disturbance suppression design of
the multivariable nonlinear system in this paper involves
the following assumption:

Assumption 4. If i = i1, i2,⋯, ip ∈f1, 2,⋯,mg, then ρi = νi; If
i ≠ i1, i2,⋯, ip, then ρi < νi.

2.2.1. Strict Feedback Linearization. If ρ1 + ρ2+⋯+ρq = n, the
system (1) can be transformed into a strict feedback subsys-
tem through strict feedback linearization and differential
homeomorphic mapping ξ = TðxÞ ∈ Rn, where

T xð Þ = h1 xð Þ, Lf h1 xð Þ,⋯, Lρ1−1f h1 xð Þ,⋯, hq xð Þ,⋯, Lρq−1f hq xð Þ
h iT

ξ = ξ1,1, ξ1,2,⋯, ξ1,ρ1 , ξ2,1,⋯, ξq,ρq
h iT

ð12Þ
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Then the dynamic equation becomes

_ξ1,1 = ξ1,2

_ξ1,2 = ξ1,3

⋮
_ξ1,ρ1 = b1 ξð Þ + A1σ xð Þv + �A1σ xð Þ�u tð Þ + Δd1 x, tð Þ

⋮
_ξq,1 = ξq,2

⋮
_ξq,ρq = bq ξð Þ + Aqσ xð Þv + �Aqσ xð Þ�u tð ÞΔdq x, tð Þ

ð13Þ

where biðξÞ = Lρif hiðxÞ, AiσðxÞ, �AiσðxÞ, and Δdi are the ith row

of AσðxÞ, �AσðxÞ, and Δd, respectively, AσðxÞ = AðxÞðI − σðtÞÞ
vðtÞ, �AσðxÞ = σðtÞ�uðtÞ, with

A xð Þ =

Lg1L
ρ1−1
f h1 xð Þ ⋯ LgmL

ρ1−1
f h1 xð Þ

Lg1L
ρ2−1
f h2 xð Þ ⋯ LgmL

ρ2−1
f h2 xð Þ

⋯ ⋯

Lg1L
ρq−1
f hq xð Þ ⋯ LgmL

ρq−1
f hq xð Þ

2666666664

3777777775

Δd x, tð Þ =

Lp1L
ρ1−1
f h1 xð Þ ⋯ LppL

ρ1−1
f h1 xð Þ

Lp1L
ρ2−1
f h2 xð Þ ⋯ LppL

ρ2−1
f h2 xð Þ

⋯ ⋯

Lp1L
ρq−1
f hq xð Þ ⋯ LppL

ρq−1
f hq xð Þ

2666666664

3777777775
d tð Þ

= δ1 xð Þ, δ2 xð Þ,⋯, δq xð Þ� �T
:

ð14Þ

The system output is expressed as

y1 = ξ1,1, y2 = ξ2,1, ⋯, yq = ξq,1: ð15Þ

2.2.2. Partial Feedback Linearization. If ρ1 + ρ2+⋯+ρq < n,
only partial feedback linearization can be carried out in system
(1) by means of coordinate transformation within the neigh-
borhood of x0. Supposing TcðxÞ is a smooth function with
the following form

Tc xð Þ = h1 xð Þ,⋯, Lρ1−1f h1 xð Þ,⋯, Lρq−1f hq xð Þ
h iT

: ð16Þ

Literature [24] indicates that there is always smooth
mapping

Tz xð Þ = T1 xð Þ,⋯, Tn− ρ1+⋯+ρqð Þ xð Þ
h iT

: ð17Þ

To form the differential homeomorphism ½ξT , ηT �T = TðxÞ =
½TcðxÞT , TzðxÞT �

T
, ξ ∈ Rρ1+ρ2+⋯+ρq , η ∈ Rn−ðρ1+ρ2+⋯+ρqÞ, system

(1) is converted into

_ξ1,1 = ξ1,2

_ξ1,2 = ξ1,3

⋮
_ξ1,ρ1 = b1 ξ, ηð Þ + A1σ xð Þv + �A1σ xð Þ�u tð Þ + Δd1 x, tð Þ

⋮
_ξq,1 = ξq,2

⋮
_ξq,ρq = bq ξ, ηð Þ + Aqσ xð Þv + �Aqσ xð Þ�u tð Þ + Δdq x, tð Þ

ð18Þ

_η = ψ ξ, ηð Þ +Ψg ξ, ηð Þu +Ψp ξ, ηð Þd tð Þ, ð19Þ
where biðξ, ηÞ,AiσðxÞ, �AiσðxÞ, i = 1, 2,⋯, q have the same defi-
nition with the equation (13). ΔdiðxÞ, i = 1, 2,⋯, q is the
unmatched disturbance. ψðξ, ηÞ = ð∂TzðxÞ/∂xÞf ðxÞjx=T−1ðξ,ηÞ,
Ψgðξ, ηÞ = ð∂TzðxÞ/∂xÞgðxÞjx=T−1ðξ,ηÞ, and Ψpðξ, ηÞ = ð∂TzðxÞ
/∂xÞpðxÞjx=T−1ðξ,ηÞ. The system (19) is termed as the zero
dynamic form of the multivariable nonlinear system (1).

2.2.3. Nonlinear Feedback Control Law. Based on Assump-
tions 3 and 4, if the system parameters and fault parame-
ters of nonlinear system (1) are accessible, feedback
linearization design can be used to design an ideal control-
ler. By taking yi derivatives of ρi in system (1), we can
obtain the following equation:

y ρið Þ
i = Lρif hi xð Þ + 〠

m

j=1
Lgj

Lρi−1f hi xð Þuj + δi xð Þ, ð20Þ

where δiðxÞ =∑p
j=1 LpjL

ρi−1
f hiðxÞdjðtÞ. We can further

obtain

y ρ1ð Þ
1

y ρ2ð Þ
2

⋮

y
ρqð Þ

q

26666664

37777775 =

Lρ1f h1 xð Þ
Lρ2f h2 xð Þ

⋮

L
ρq
f hq xð Þ

26666664

37777775 + A xð Þu + Δd x, tð Þ: ð21Þ

When m = q and assuming AðxÞ is nonsingular in x0, the
control input signal could be rearranged as

u tð Þ = −A−1 xð Þ

Lρ1f h1 xð Þ
Lρ2f h2 xð Þ

⋮

L
ρq
f hq xð Þ

26666664

37777775 + A−1 xð ÞuL: ð22Þ
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The linearized system can be obtained

y ρ1ð Þ
1

y ρ2ð Þ
2

⋮

y
ρqð Þ

q

26666664

37777775 =

uL1

uL2

⋮

uLq

2666664

3777775 + Δd x, tð Þ, ð23Þ

where uL is the linear feedback control law to be designed.

2.2.4. Linear Feedback Control. The control law from the lin-
earized system provides the possibility to guarantee the out-
put tracking performance of the system. The control law
uL = ½uL1, uL2,⋯, uLq�T is

uLi = y ρið Þ
mi + αi1 y ρi−1ð Þ

mi − y ρi−1ð Þ
i

� �
+⋯+αiρi ymi − yið Þ + δci x, tð Þ,

ð24Þ

where δciðx, tÞ = −∑p
j=1 LpjL

ρi−1
f hiðxÞdjðtÞ. With substitution

of uLi and equation (24) into equation (23), the dynamic
equation of the tracking error ei = yi − ymi is obtained as

e ρið Þ
i + αi1e

ρi−1ð Þ
i +⋯+αiρi ei = 0: ð25Þ

By selecting appropriate value for αiρi , i = 1, 2,⋯, q,
sρi + αi1s

ρi−1+⋯+αiρi becomes the Hurwitz polynomial.

The output error and its higher derivative ei, _ei,⋯, eðρi−1Þi
asymptotically approach to zero as t⟶∞. If ymi, _ymi,⋯,
yðρi−1Þmi is bounded, then boundedness could be expected for

yi, _yi,⋯, yðρi−1Þi .

Remark 5. If for all i = 1, 2,⋯,m, ρi < νi, then δiðx, tÞ = 0, in
equation (26), i.e., ΔdiðxÞ = 0, i = 1, 2,⋯,m. Thus, equation
(21) can be simplified as

y ρ1ð Þ
1

y ρ2ð Þ
2

⋮

y
ρqð Þ

q

26666664

37777775 =

Lρ1f h1 xð Þ
Lρ2f h2 xð Þ

⋮

Lρqf hq xð Þ

26666664

37777775 + A xð Þu: ð26Þ

Linearized system becomes disturbance-free, and dis-
turbance suppression is unnecessary in the basic feed-
back control system. In addition, in combination with
equation (24), equation (21) can be further expressed as

½yðρ1Þ1 , yðρ2Þ1 ,⋯, yðρqÞq �
T
= uLðtÞ, where uLiðtÞ can assume the

following simplification uLi = yðρiÞmi + αi1ðyðρi−1Þmi − yðρi−1Þi Þ+⋯
+αiρiðymi − yiÞ, i = 1, 2,⋯,m:

Remark 6. If ρi > νi, i ∈ 1, 2,⋯,m, then δiðx, tÞ in equation
(20) is related to the disturbance term dðtÞ and its differential

term _dðtÞ,⋯, dρi−νiðtÞ, and could be expressed as a function
of the differential term _dðtÞ,⋯, dρi−νiðtÞ
δiðx, tÞ = −dρi−νi /dtð∑p

j=1 LpjL
ρi−1
f hiðxÞdjðtÞÞ. In this case, in

order to achieve disturbance suppression and asymptotic
tracking control, it is necessary to acquire the differential
information of the disturbance in advance. However, the der-
ivation process is rather complicated. Therefore, such situa-
tion is not considered in this design.

3. Actuator Fault Compensation and
Disturbance Suppression Design

If the relevance of the system fρ1, ρ2,⋯, ρqg satisfies ρ1 +
ρ2+⋯+ρq = n, the system with uncertain actuator fault can
be linearized by strict feedback and converted into

_ξ1,1 = ξ1,2,
_ξ1,2 = ξ1,3,

⋮
_ξ1,ρ1 = b1 ξð Þ + A1σ xð Þv + �A1σ xð Þ�u tð Þ + Δd1 x, tð Þ

⋮
_ξq,1 = ξq,2,

⋮
_ξq,ρq = bq ξð Þ + Aqσ xð Þv + �Aqσ xð Þ�u tð Þ + Δdq x, tð Þ

y1 = ξ1,1, y2 = ξ2,1, ⋯, yq = ξq,1:

ð27Þ

Based on uLi, i = 1, 2,⋯, q in equation (24), the control
signal wdðtÞ ∈ Rqof the system (27) could be determined
through nonlinear feedback, if

Aσ xð Þv tð Þ + �Aσ xð Þ�u tð Þ =wd tð Þ: ð28Þ

The control signal can guarantee asymptotic output
tracking, i.e., limt→∞ðyðtÞ − ymðtÞÞ = 0. With occurrence of
uncertain actuator fault, the control input signal vðtÞ could
be calculated according to equation (28).

3.1. Adaptive Disturbance Suppression Design. The control
signal wdðtÞ and the feedback linearization are determined
in this chapter. The detailed derivation includes adaptive
controller, error equation, parameter adaptive updating law,
and stability analysis.

3.1.1. Adaptive Feedback Linearization Design. In the distur-
bance model djðtÞ = θ∗Tdj ϖdjðtÞ, ϖdjðtÞj = 1, 2,⋯, p are known
functions while θ∗dj are unknown parameters. The unknown

parameters could be estimated with d̂ jðtÞ = bθT

djϖdjðtÞ in the

disturbance suppression design, where bθdj is the estimate of
the disturbance parameter θ∗dj, j = 1, 2,⋯, p. Based on the
estimation, the adaptive linear control law is obtained as
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u tð Þ = −A−1 xð Þ

Lρ1f h1 xð Þ
Lρ2f h2 xð Þ

⋮

L
ρq
f hq xð Þ

26666664

37777775 + A−1 xð ÞûL, ð29Þ

where ûL is the estimated value of uL, and its estimated
component is

ûLi = y ρið Þ
mi + αi1 y ρi−1ð Þ

mi − y ρi−1ð Þ
i

� �
+ αiρi ymi − yið Þ + bδ ci x, tð Þ,

bδ ci x, tð Þ = −〠
p

j=1
LpjL

ρi−1
f hi xð Þd̂ j tð Þ:

ð30Þ

3.1.2. Error Model. Let z1,1 = ξ1,1 − ym1, z1,2 = ξ1,2 − _ym1, ⋯,

z1,ρ1 = ξ1,ρ1 − yðρ1−1Þm1 , ⋯zi,ρi = ξi,ρi − yðρi−1Þmi , ⋯, zq,ρq = ξq,ρq −

y
ðρq−1Þ
mq , z ∈ Rρ1+ρ2+⋯+ρq = ½zT1 , zT2 ,⋯, zTq �T = ½z1,1,⋯, z1,ρ1 ,⋯,
zi,ρi ,⋯, zq,ρq �

T . Combining the system output in equation

(15): y1 = ξ1,1, y2 = ξ2,1, ⋯, yq = ξq,1 and ei = yi − ymi, one

can obtain z1,1 = e1, z1,2 = _e1, ⋯, z1,ρ1 = eðρ1−1Þ1 , ⋯, zi,ρi =
eðρi−1Þi , ⋯, zq,ρq = e

ðρq−1Þ
q . And the state error equation of

the multi-input multioutput system is calculated by

_z = Azz + Bz~Ed
, ð31Þ

where Az = diag fAz1
, Az2

,⋯, Azq
g, Bz~Ed

= ½BT
z1
~Ed1, BT

z2
~Ed2,

⋯, BT
zq
~Edq�T , and ~Edi =∑p

j=1 LpjL
ρi−1
f hiðxÞ~θ

T
djðtÞϖdj,

Azi
=

0 1 0 ⋯ 0 0
0 0 1 ⋯ 0 0

⋯ ⋯

−αi1 −αi2 ⋯ −αi ρi−2ð Þ −αi ρi−1ð Þ −αiρi

2666664

3777775,

Bzi
= 0, 0,⋯, 1½ �T ∈ Rρi , i = 1, 2,⋯, q:

ð32Þ

3.1.3. Adaptive Laws. Based on error system (31), an adap-
tive law is incorporated to update unknown disturbance

parameters bθdj, j = 1, 2,⋯, p. Lyapunov function is
designed in following form

Vd =
1
2 z

TPz + 1
2〠

p

j=1
~θ
T
djΓ

−1
dj
~θdj, ð33Þ

where adaptive gain matrix Γdj = ΓT
dj > 0, P ∈ Rn×n is posi-

tive definite symmetric matrix and satisfies the following
equation

PAz + AT
z P = −Q, ð34Þ

where Q =QT > 0. Taking the derivative with respect to
Vd gives

_Vd =
1
2 _z

TPz + 1
2 z

TP _z + 〠
p

j=1
~θ
T
djΓ

−1
dj
_~θdj

= 1
2 z

T PAz + AT
z P

� �
z + zTPBz~Ed

+ 〠
p

j=1

~θ
T
djΓ

−1
dj
_~θdj

= −
1
2 z

TQz + ZP
~Ed1,⋯, ~Edq

� �T + 〠
p

j=1
~θ
T
djΓ

−1
dj
_~θdj

= −
1
2 z

TQz + 〠
p

j=1
〠
q

i=1
ZPi

~θ
T
djϖρi ,j + 〠

p

j=1
~θ
T
djΓ

−1
dj
_~θdj,

ð35Þ

where ZP = ½ZP1, ZP2,⋯, ZPq�T , ZPi, i = 1, 2,⋯, q are the

components of zTP ∈ R1×ðρ1+ρ2+⋯+ρqÞ, ϖρi ,j = LpjL
ρi−1
f hiðxÞ

ϖdj. Design control equation is given by

wd tð Þ=Δ −

Lρ1f h1 xð Þ
Lρ2f h2 xð Þ

⋮

L
ρq
f hq xð Þ

26666664

37777775 + ûL, ð36Þ

and the adaptive law of the parameter bθdj is

_bθdj = 〠
q

i=1
ΓdjZPiϖρi ,j, j = 1, 2,⋯, p: ð37Þ

With a substitution into equation (33), the following
could be obtained

_Vd = −
1
2 z

TQz ≤ 0: ð38Þ

So it is ensured that bθdj ∈ L∞,
_bθdj ∈ L2 ∩ L∞. The sta-

bility of the closed-loop system can be determined from
the negative definition of _Vd and limt→∞zi,1ðtÞ = limt→∞ð
yiðtÞ − ymðtÞÞ = 0, i = 1, 2,⋯, q. It indicates that a desired
performance is achieved with the control system.

3.2. Adaptive Fault Compensation Control Design. Supposing
the fault information (fault mode, fault value, and fault time)
is known. Two ideal controllers v∗ð1ÞðtÞ and v∗ð2ÞðtÞ are

designed for the two cases (without fault and actuator u1
fault). Through weighted fusion design, an integrated con-
troller v∗ðtÞ is obtained, which can deal with the simulta-
neous coexistence of two fault modes mentioned above.
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3.2.1. Fault Free Condition. In this case, σ = diagf0, 0,⋯, 0g,
the control equation (28) is AðxÞvðtÞ =wdðtÞ. By selecting
an appropriate h21ðxÞ ∈ Rm×ðm−1Þ, the following equation
could be satisfied

v tð Þ = v∗1ð Þ tð Þ = h21 xð Þv∗0 1ð Þ tð Þ ð39Þ

By solving the equation AðxÞh21ðxÞv∗0ð1ÞðtÞ =wdðtÞ, we
could obtain the following equation

v∗0 1ð Þ tð Þ = K21 xð Þwd tð Þ, ð40Þ

where K21ðxÞ ∈ Rðm−1Þ×q.

3.2.2. u1 Fault Condition. In case of u1 fault condition,
σ = diagf1, 0,⋯, 0g, u1 = �u1, ui = vi, i = 2,⋯,m, AðxÞ
= ½A1, A2,⋯, Am� = ½A1, Að2Þ� ∈ Rq×m, where Að2Þ = ½A2,⋯,
Am� ∈ Rq×ðm−1Þ, v = ½v1, vTað2Þ�

T ∈ Rm, where vað2Þ =
½v2,⋯, vm�T ∈ Rm−1, by selecting the appropriate matrix
equation h22ðxÞ ∈ Rðm−1Þ×ðm−1Þ, one could have v∗að2ÞðtÞ =
h22ðxÞv∗0ð2ÞðtÞ. And the equation could be solved

A1�u1 tð Þ + A 2ð Þh22 xð Þv∗0 2ð Þ tð Þ =wd tð Þ: ð41Þ

The ideal controller under this condition is

v∗0 2ð Þ tð Þ = K22 xð Þwd tð Þ + K221 xð Þ�u1 tð Þ: ð42Þ

3.2.3. Integrated Control Law. The fault index function is
defined as

χ∗
1 =

1 fault free condition
0 others,

(

χ∗
2 =

1 u1 fault condition
0 others:

( ð43Þ

With a weighted fusion of controller v∗ð1ÞðtÞ and

v∗ð2ÞðtÞ, an ideal integrated controller structure is

achieved.

v∗ tð Þ = χ∗
1 tð Þv∗1ð Þ tð Þ + χ∗

2 tð Þv∗2ð Þ tð Þ = v∗χ1 1ð Þ tð Þ + 0, v∗Tχ2a 2ð Þ tð Þ
h iT

,

ð44Þ

where v∗χ2að2ÞðtÞ = χ∗
2 ðtÞh22K22ðxÞwdðtÞ + χ∗

2 ðtÞh22K221ðxÞ
�u1ðtÞ:

3.2.4. Adaptive Controller Structure. From equation
(44), the structure of adaptive controller can be
deduced as

v tð Þ = vχ1 1ð Þ tð Þ + vχ2 2ð Þ tð Þ = vχ1 1ð Þ tð Þ + 0, vTχ2a 2ð Þ tð Þ
h iT

, ð45Þ

where

vχ1 1ð Þ =
Δ diag χ1,1,⋯, χ1,m

� 	
h21K21wd ð46Þ

vχ2a 2ð Þ =
Δ diag χ2,1,⋯, χ2,m−1

� 	
h22K22wd

+

θT1 1ð Þϖ1ϕ2,1

θT1 2ð Þϖ1ϕ2,2

⋮

θT1 m−1ð Þϖ1ϕ2,m−1

266666664

377777775
:

ð47Þ

χj,i and θ1ðiÞ are the estimated value of χ∗
j,i and

θ∗1ðiÞ, χ∗
1,i = χ∗

1 , i = 1,⋯,m, χ∗
2,i = χ∗

2 , θ∗1ðiÞ = χ∗
2θ

∗
1 , i = 1,

2,⋯,m − 1.

Remark 7.As the number of f jiðtÞ increase, the parameters of
the actuator failure (including the parameters of failure
indicator function χ∗

i and χ∗
2 , failure model θ∗1 also

increases. In our proposed actuator failure compensation
design, all the unknown parameters will be estimated mul-
tiple (m or m − 1) times based on χ∗

1,i = χ∗
1 , i = 1,⋯,m,

χ∗
2,i = χ∗

2 , θ
∗
1ðiÞ = χ∗

2θ
∗
1 , i = 1, 2,⋯,m − 1. With the develop-

ment of science and technology, the computers have
become more advanced, the computation complexity can
be solved effectively.

3.2.5. Error Equations. Equation (21) could be rewritten as

y ρ1ð Þ
1

y ρ2ð Þ
1

⋮

y
ρqð Þ

q

26666664

37777775 =

Lρ1f h1 xð Þ
Lρ2f h2 xð Þ

⋮

L
ρq
f hq xð Þ

26666664

37777775 + A xð Þu −wd tð Þ +wd tð Þ +

δ1 xð Þ
δ2 xð Þ
⋮

δq xð Þ

2666664

3777775

=

y ρ1ð Þ
m1 + α11 y ρ1−1ð Þ

m1 − y ρ1−1ð Þ
1

� �
+ α1ρ1 ym1 − y1ð Þ

y ρ2ð Þ
m2 + α21 y ρ2−1ð Þ

m2 − y ρ2−1ð Þ
2

� �
+ α2ρ2 ym2 − y2ð Þ

⋮

y
ρqð Þ

mq + αq1 y
ρq−1ð Þ

mq − y
ρq−1ð Þ

q


 �
+ αqρq ymq − yq

� �

26666666664

37777777775

+ A xð Þ I − σ tð Þð Þ v tð Þ − v∗ tð Þð Þ +

δ1 xð Þ
δ2 xð Þ
⋮

δq xð Þ

2666664

3777775 −

bδ1 xð Þbδ2 xð Þ
⋮bδq xð Þ

26666664

37777775:

ð48Þ
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To obtain the output error eðtÞ = yðtÞ − ymðtÞ and the
parameter estimation error ~χ1,iðtÞ, ~χ2,iðtÞ, the dynamic for-
mula between ~θ1ðiÞðtÞ and ~θdj is reformulated as

e ρ1ð Þ
1 +⋯+α1ρ1e1

e ρ2ð Þ
2 +⋯+α2ρ2e2

⋮

e
ρqð Þ

q +⋯+αqρq eq

266666664

377777775
= A xð Þ I − σ tð Þð Þ v − v∗ð Þ + ~Ed1, ~Ed2,⋯,~Edq

� �T
:

ð49Þ

If σ = σð1Þ = diagf0,⋯, 0g

e ρ1ð Þ
1 +⋯+α1ρ1e1

e ρ2ð Þ
2 +⋯+α2ρ2e2

⋮

e
ρqð Þ

q +⋯+αqρq eq

26666666664

37777777775
= 〠

m

i=1
Ai~χ1,iv1,i + 〠

m−1

i=1
Ai+1~χ2,iv2,i

+ 〠
m−1

i=1
Ai+1~θ

T
1 ið Þϖ1ϕ2,i + ~Ed1, ~Ed2,⋯,~Edq

� �T
= 〠

m

i=1
Ai~χ1,iv1,i + 〠

m−1

i=1
Ai+1~χ2,iv2,i

+ 〠
m−1

i=1
Ai+1

~θ
T
1 ið Þϖ1ϕ2,i +

〠
p

j=1
~θ
T
djϖρ1, j

〠
p

j=1
~θ
T
djϖρ2, j

⋮

〠
p

j=1
~θ
T
djϖρq , j

26666666666666664

37777777777777775
=Δ ~E1,

ð50Þ

where h21K21wd = ½v1,1,⋯, v1,m�T , h22K22wd = ½v2,1,⋯,
v2,m−1�T , ϖρi ,j = LpjL

ρi−1
f hiðxÞϖdj.

Ifσ = σð2Þ = diagf1,⋯, 0g, equation (49) can be expressed as

e ρ1ð Þ
1 +⋯+α1ρ1e1

e ρ2ð Þ
2 +⋯+α2ρ2e2

⋮

e
ρqð Þ

q +⋯+αqρq eq

26666666664

37777777775
= 〠

m

i=2
Ai~χ1,iv1,i + 〠

m−1

i=1
Ai+1~χ2,iv2,i

+ 〠
m−1

i=1
Ai+1

~θ
T
1 ið Þϖ1ϕ2,i

+ 〠
p

j=1
~θ
T
djϖρ1,j, 〠

p

j=1
~θ
T
djϖρ2,j,⋯,〠

p

j=1
~θ
T
djϖρq ,j

" #T

= Δ~E2:

ð51Þ

The state error equation can be obtained from equations
((50), (51)).

_z = Azz + Bz ~E~k, ð52Þ

where Az = diagfAz1
,⋯, Azq

g ∈ Rðρ1+⋯+ρqÞ×ðρ1+⋯+ρqÞ, ~Ekj is

the jth component of ~Ek, k = 1, 2, Bz~Ek
= ½BT

z1
~Ek1, BT

z2
~Ek2,⋯,

BT
zq
~Ekq�T ∈ Rðρ1+⋯+ρqÞ.

3.2.6. Adaptive Laws. Based on state error equation (52), the
adaptive laws could be derived with projection algorithm,
parameters χ1,i, i = 1,⋯,m, χ2,i and θ1ðiÞ, i = 1, 2,⋯,m − 1,
are estimated as

_χ1,i tð Þ =
−γ1iz

TPBZAiv1,i i = 2,⋯,m

−γ1iz
TPBZAiv1,i + f χ1,i

i = 1

8<: ð53Þ

_χ2,i tð Þ = −γ2iz
TPBzAi+1v2,i, i = 1,⋯,m − 1 ð54Þ

_θ1 ið Þ tð Þ = −zTPBzAi+1Γ1iϖ1ϕ2,i, i = 1,⋯,m − 1 ð55Þ

where Γ1i = ΓT
1i > 0, γ1i > 0 and γ2i > 0 are the adaptive gains,

f χ1,i
is the projection algorithm. Consequently, according to

adaptive laws _χ1,1 = −γ11z
TPBzA1v1,1 + f χ1,1

, we can derive

that 0 ≤ χ1,1 ≤ 1 and

χ1,1 − χ∗
1,1

� �
f χ1,1

≤ 0: ð56Þ

3.2.7. Performance Analysis. (I) For time period t ∈ ½T0, T1Þ,
T1 =∞, σ = σð1Þ = diag f0,⋯, 0g. The Lyapunov function is
defined as

V0 =
1
2 z

TPz + 1
2 〠

m

i=1
~χ2
1,iγ

−1
1i + 〠

m−1

i=1
~χ2
2,iγ

−1
2i + 〠

m−1

i=1

~θ
T
1 ið ÞΓ

−1
1i
~θ1 ið Þ

" #

+ 1
2〠

p

j=1

~θ
T
djΓ

−1
dj
~θdj:

ð57Þ

Combining equations ((37), (50), (51), (52), (53), (54),
(55)) one would have the derivative of V0

_V0 = −zTQz ≤ 0, t ∈ T0, T1½ Þ: ð58Þ

Thus, it can be proved that the designed adaptive control-
ler and its parameter adaptive laws could ensure the desired
system performance under the free fault condition, i.e., ξ,
~χ1,iðtÞ, ~χ2,iðtÞ, ~θ1ðiÞðtÞ, and ~θdj are all bounded, and the output
error asymptotes to zero as time going on.

(II) If actuator u1 has faults in time period ðT1, T2Þ
(T2 =∞), i.e., σ = σð2Þ = diag f1,⋯, 0g, the Lyapunov func-
tion is defined as
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V1 =
1
2 z

TPz + 1
2 〠

m

i=2
~χ2
1,iγ

−1
1i + 〠

m−1

i=1
~χ2
2,iγ

−1
2i + 〠

m−1

i=1
~θ
T
1 ið ÞΓ

−1
1i
~θ1 ið Þ

" #

+ 1
2〠

p

j=1

~θ
T
djΓ

−1
dj
~θdj:

ð59Þ

Combining equations ((37), (50), (51), (52), (53), (54),
(55)) gives the derivative of V1,

_V1 = −zTQz ≤ 0, t ∈ T1, T2½ Þ: ð60Þ

The above equation indicates that ξ, ~χ1,iðtÞ, i = 2,⋯,m,

~χ2,iðtÞ, ~θ1ðiÞðtÞ, i = 1,⋯,m − 1 and ~θdj, j = 1, 2,⋯, p are
bounded when actuator u1 is failed. In addition, the adaptive
projection algorithm _χ1,1ðtÞ = −γ1iz

TPBzAiv1,i + f χ1,i
can

ensure 0 ≤ χ1,1ðtÞ ≤ 1. Thus, it can be verified that with
increase in t, the closed-loop system is stable and the output
asymptotically approaches zero: limt→∞ðyðtÞ − ymðtÞÞ = 0. In
conclusion, the following theorem can be obtained.

Theorem 8. For the multivariable nonlinear system (1) with
potential uncertain actuator fault (3) and mismatched
disturbance dðtÞ, controller (45) and its parameter adaptive
laws can ensure the closed-loop system stability and asymptotic
tracking output: limt→∞ðy − ymÞ = 0, ifρ1 + ρ2+⋯+ρq = nand
the equivalent control matrix AσðxÞ = AðxÞðI − σðtÞÞvðtÞ in
uncertain fault condition has full rank in the domain U
(definition is U ⊂ Rn ⟶V ⊂ Rq).

3.3. Fault Compensation Design of Zero Dynamic System. If
ρ1 + ρ2+⋯+ρq < n, there is differential homeomorphism

ξT , ηT
h iT

= T xð Þ = Tc xð ÞT , Tz xð ÞT
h iT

: ð61Þ

The nonlinear system with uncertain actuator fault _xðtÞ
= f ðxÞ + gðxÞσðtÞ�uðtÞ + gðxÞð1 − σðtÞÞvðtÞ + pðxÞdðtÞ, y = h
ðxÞ is converted into

_ξ1,1 = ξ1,2

_ξ1,2 = ξ1,3

⋯
_ξ1,ρ1 = b1 ξ, ηð Þ + A1 xð Þ I − σð Þv + A1 xð Þσ�u + Δd1 x, tð Þ

⋯
_ξi,ρi = ξi,ρi+1

⋯
_ξi,ρi = bi ξ, ηð Þ + Ai xð Þ I − σð Þv + Ai xð Þσ�u + Δdi x, tð Þ

_ξq,1 = ξq,2

⋯
_ξq,ρq = bq ξ, ηð Þ + Aq xð Þ I − σð Þv + Aq xð Þσ�u + Δdq x, tð Þ,

ð62Þ

and zero dynamic subsystem

_η = ψ ξ, ηð Þ +Ψσ ξ, ηð Þ�u + �Ψσ ξ, ηð Þv +Ψp ξ, ηð Þd tð Þ, ð63Þ

where TcðxÞ = ½h1ðxÞ,⋯, Lρ1−1f h1ðxÞ,⋯, Lρq−1f hqðxÞ�
T
, TzðxÞ

definitely exists and is nonunique. Ψσðξ, ηÞ = ð∂TzðxÞ/∂xÞ
gðxÞσ, �Ψσðξ, ηÞ = ð∂TzðxÞ/∂xÞgðxÞðI − σÞ is related to the
fault mode σ.

3.3.1. Stable Zero Dynamic Assumption. To ensure the stabil-
ity of the closed-loop system and output yiðtÞ asymptotic
tracking reference signal ymiðtÞ, the differentials of ρi, i = 1,
2,⋯, q of ymiðtÞ are bounded and piecewise continuous. In
this paper, the controller is developed based on the following
assumption:

Assumption 9. The nonlinear system (1) still belongs to the
minimum phase system under condition of centralized arbi-
trary fault, which is considered as the fault mode of this
paper. That is, with input of uðtÞ, dðtÞ, and ξ, the zero
dynamic subsystem given by

_η = ψ ξ, ηð Þ +Ψσ ξ, ηð Þ�uÞ +Ψp ξ, ηð Þd
+ �Ψσ ξ, ηð Þv ξ, η, ~χ1,i, ~χ2,i, ~θ1 ið Þ

� � ð64Þ

could guarantee input state stability.

Remark 10. Based on Assumption 9, if σ ∈ Σ in any fault case,
the state ξ, fault signal �u, and the designed feedback control
signal vðξ, η, ~χ1,i, ~χ2,i, ~θ1ðiÞÞ are all bounded while dðtÞ is
bounded disturbance. According to the input state stability
condition of the zero dynamic system, η is bounded. Com-
bined with the performance analysis results in Section 3.2,
it can be inferred that the nonlinear feedback control signal
designed in this paper vðξ, η, ~χ1,i, ~χ2,i, ~θ1ðiÞÞ is bounded.

Combined with Assumption 3, the signal vðtÞ of adaptive
fault compensation designed for the partial feedback lineari-
zation system (18) is similar to that for full feedback lineari-
zation system in Section 3.2. The detailed derivation is not
rendered. The closed-loop system has the following desired
control performance.

Theorem 11. Based on the input state stability condition of
zero dynamic (Assumption 9) and the equivalent control
matrix AσðxÞ in uncertain fault with row full ranks in domain
of U, the adaptive controller (45) and its parameter adaptive
law can achieve desired stability for closed-loop system (3)
and asymptotic tracking output: limt→∞ðyðtÞ − ymðtÞÞ = 0 in
the case of multiple uncertain actuator faults (3) and
unknown disturbances.

Proof. Assuming one of the actuators failed at time T1, and
the system has no fault during time period ðT1, T2Þ, it can
be derived according to the performance analysis in Section
3.2 that the estimated parameters ξ, ~χ1,iðtÞ, ~χ2,iðtÞ, and ~θ1ðiÞ
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ðtÞ are bounded and the state error z asymptotically
approaches to zero as t tends towards infinity. Bounded-
ness of vðtÞ could be further confirmed from equations
((45), (46), (47)). Input state stability and row full rank
constitute an estimation criterion for performance of a
closed-loop system in terms of stability and asymptotical
tracking capability.

4. Applications in Aircraft Control System

In this section, the proposed control method is applied to the
aircraft control system, so that the developed control algo-
rithm could be comprehensively validated. The numerical
simulation results show that this method can offer an effec-
tive compensation for uncertain actuator fault in the case of
gust disturbance.

4.1. Aircraft Dynamics in Turbulent Flow. The research of
aircraft dynamic model under turbulence conditions in refer-
ence [37] shows that the longitudinal nonlinear dynamic
model of the aircraft can be expressed as [38, 39]

_V = Fx cos αð Þ + Fz sin αð Þ
mr

+ d1,

_α = qr +
−Fx sin αð Þ + Fz cos αð Þ

m
+ d2,

_θ = qr ,

_q = M
Iy

+ d3,

ð65Þ

where V is the aircraft speed, α is the attack angle, θ is the
angle of pitch, qr is the pitch rate, mr is the mass, Iy is the
rotational inertia, M is the pitch moment, and d1, d2, and
d3 are turbulence disturbance signals

Fx = qrSCx α, qr , δe1, δe2ð Þ + T1 cos γ1 + T2 cos γ2 −mrg sin θð Þ,
Fz = �qSCz α, qr , δe1, δe2ð Þ + T1 sin γ1 + T2 sin γ2 +mrg cos θð Þ,
M = �qcSCm α, qr , δe1, δe2ð Þ,

ð66Þ

�q = 1/2ρV2 is the dynamic pressure, ρ is the air density, S is
the density of the wing, c is the average chord, and T1 and
T2 are thrusters. Cx, Cz , and Cm are given by

Cx = Cx1α + Cx2α
2 + Cx3 + Cx4 k1δe1 + k2δe2ð Þ,

Cz = Cz1α + Cz2α
2 + Cz3 + Cz4 k1δe1 + k2δe2ð Þ + Cz5q,

Cm = Cm1α + Cm2α
2 + Cm3 + Cm4 k1δe1 + k2δe2ð Þ + Cm5q,

ð67Þ

where δe1 and δe2 are the two actuators that require fault
compensation.

4.1.1. State Space Representation. The state variables x1, x2, x3,
and x4 are represented by V , α, θ, and q, respectively. The

input variables δe1, δe2, T1, and T2 are represented by u1, u2,
u3, and u4. Nonlinear system (1) can be expressed as

_x1 = cT1 φ0 x2ð Þx21 + φ1 xð Þ� �
cos x2ð Þ + cT2 φ0 x2ð Þx21 + φ2 xð Þ� �

sin x2ð Þ
+ k1g1 xð Þu1 + k2g1u2 + g31 xð Þu3 + g41 xð Þu4 + d1, _x2

= x4 − cT1 φ0 x2ð Þx1 + φ1 xð Þ 1
x1


 �
sin x2ð Þ

+ cT2 φ0 x2ð Þx1 + φ2 xð Þ 1
x1


 �
cos x2ð Þ + k1g2 xð Þu1

+ k2g2 xð Þu2 + g32 xð Þu3 + g42 xð Þu4 + d2,
_x3 = x4,
_x4 = ϕ xð Þ + b1x

2
1u1 + b2x

2
2u2 + d3,

ð68Þ
where φ0ðx2Þ = ½x2, x22, 1�T , φ1ðxÞ = p0 sin ðx3Þ, φ2ðxÞ = p1
x4x

2
1 + p0 cos ðx3Þ, g1ðxÞ = a1x

2
1 cos ðx2Þ + a2x

2
1 sin ðx2Þ, g2

ðxÞ = −a1x1 sin ðx2Þ + a2x1 cos ðx2Þ, g31ðxÞ = cos r1 cos ðx2Þ
+ sin r2 sin ðx2Þ, g32ðxÞ = −cos r1 ðsin ðx2Þ/x1Þ + sin r1ðcos
ðx2Þ/x1Þ, g41ðxÞ = cos r1 cos ðx2Þ + sin r2 sin ðx2Þ, g42ðxÞ =
−cos r2ðsin ðx2Þ/x1Þ + sin r2ðcos ðx2Þ/x1Þ, and ϕðxÞ =
½x21x2, x21x22, x21, x21x4�T . B, k1, k2, c1, c2, p1, a1, a2, r1, r2,
b1, and b2 are known constants.

4.1.2. Control Objectives. For the aircraft control system (68)
with uncertain turbulent disturbance and actuator faults, an
adaptive fault compensation controller is designed to ensure
that the stability of the closed-loop system is satisfied and
that the system output yðtÞ = ½x1, x2, x3�T could track the
desired control instruction ymðtÞ = ½ym1, ym2, ym3�T =
½3 sin ð0:1tÞ + 88,1:2 sin ð0:1tÞ, 3 sin ð0:1tÞ�T . According to
Theorem 11, ρ1 = v1 = 1, ρ2 = v2 = 1, ρ3 = v3 = 2, and ρ1 + ρ2
+ ρ3 = 4. The system satisfies Assumption 3 without zero
dynamic subsystem after feedback linearization. The follow-
ing fault modes corresponding to the requirements of fault
compensation can be obtained:

diag 1, 0, 0, 0f g, diag 0, 1, 0, 0f g, diag 0, 0, 1, 0f g,
diag 0, 0, 0, 1f g, and diag 0, 0, 0, 0f g:

ð69Þ

4.1.3. Numerical Simulation Conditions. The aircraft param-
eters in reference [36] are as follows: mr = 4600kg, g =
9:80665m/s2, S = 39:02m2, c = 1:98m, r1 = arctan 53/1216, r2
= arctan 2/45, ρ = 0:7377kg/m3, Iy = 31027kg ·m2, Cx1 =
0:39, Cx2 = 2:9099, Cx3 = −0:0758, Cx4 = 0:0961, Cz1 = −
7:0186, Cz2 = 4:1109, Cz3 = −0:3112, Cz4 = −0:2340, Cz5 = −
0:1023, Cm1 = −0:8789, Cm2 = −3:8520, Cm3 = −0:0108, Cm4
= −1:8987, and Cm5 = −0:6266. The disturbances are
given by d1ðtÞ = 30 cos ð5tÞ + 50N , d2ðtÞ = 15 sin ð8tÞ +
30 cos ð4tÞN , and d3ðtÞ = 20 sin ð10tÞ + 10N:m.

During the simulation verification, the following fault
conditions are incorporated: (i) When t < 150s, the system
is in the absence of faults: uiðtÞ = viðtÞ, i = 1, 2, 3, 4; (ii) When
150s ≤ t ≤ 300s, actuator u1 is stuck: u1ðtÞ = 0 deg, uiðtÞ = vi
ðtÞ, i = 2, 3, 4; (iii) When 300s ≤ t ≤ 400s, actuator u1 returns
to normal: uiðtÞ = viðtÞ, i = 1, 2, 3, 4; (iv) When t ≥ 400s, actu-
ator u4 is stuck: u4ðtÞ = 300 N, uiðtÞ = viðtÞ, i = 1, 2, 3.
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4.2. Simulation Results. In the simulation, the parameters of
the adaptive controller ûL are α11 = α21 = α31 = α32 = 0:75,
and the other design parameters are as follows:

(1) Initial state: x0 = ½0:008,0:72,0:008,0:008�T

(2) The base function in disturbance model (8), initial
disturbance parameter, and the adaptive gain are
ϖd1 = ϖd2 = ϖd3 =
½1, sin ð8tÞ, cos ð4tÞ, sin ð10tÞ, cos ð5tÞ�T , bθd1ð0Þ =bθd2ð0Þ = bθd2ð0Þ = ½0, 0, 0, 0, 0�, and Γd1 = Γd2 = Γd3
= 10I5, respectively

(3) The base function in actuator failure model (3),
initial failure parameter, and the adaptive gain are

ϖ1ðtÞ = ϖ4ðtÞ = ½1, sin ðtÞ�T ∈ R2, ½χ11ð0Þ, χ12ð0Þ, χ13
ð0Þ, χ14ð0Þ� = ½1, 1, 1, 1�, ½χ21ð0Þ, χ22ð0Þ, χ23ð0Þ� = ½0,
0, 0�, ½χ31ð0Þ, χ32ð0Þ, χ33ð0Þ� = ½0, 0, 0�, θ1ð1Þð0Þ =
θ1ð2Þð0Þ = θ1ð3Þð0Þ = ½0, 0�T , θ4ð1Þð0Þ = θ4ð2Þð0Þ = θ4ð3Þ
ð0Þ = ½0, 0�T , γ11 = γ12 = γ13 = γ14 = 1, γ21 = γ22 = γ23
= 1, γ31 = γ32 = γ33 = 1, and Γ1i = Γ4i = 5I2

Simulation results are shown in Figures 1–3, including a
comparison between the actual output of the system and

0 50 100 150 200 250 300 350 400 450 500
85

90

95
Output y1 (solid) and reference y1m (dashed)

Time: sec
m

/s

0 50 100 150 200 250 300 350 400 450 500
−2

0

2
Output y2 (solid) and reference y2m (dashed)

Time: sec

D
eg

0 50 100 150 200 250 300 350 400 450 500
−5

0

5
Output y3 (solid) and reference y3m (dashed)

Time: sec

D
eg

Figure 1: System outputs and reference outputs.
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Figure 2: Tracking errors.
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the corresponding reference signal, the tracking error of the
system, and the control input signals of four actuators acting
on the system in the aircraft.

It can be seen from Figures 1 and 2 that during the actual
operation, the designed control algorithm can always fulfill
the control objective of system stability and asymptotic track-
ing, irrespective of normal operation or uncertainties in time,
value, or fault model. The results in Figure 3 show that the
system has external disturbance and no actuator fault during

the period t ∈ ½0,150sÞ. In the process of the asymptotic track-
ing of a given instruction, a transient response appears and
decreases with time. The robustness of the proposed control
method is verified through the results. When the actuator u1
fails at t = 150s and actuator u4 fails at t = 400 s (shown in
Figure 3), the simulation results demonstrate the effective-
ness of the proposed adaptive compensation algorithm for
both actuator fault and the disturbance. Moreover, the esti-
mates of the adaptive controller parameters χ1,i, χ2,i, χ3,i,
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Figure 3: Control inputs.
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θ1ðiÞ, and θ4ðiÞ of χ∗
1,iχ

∗
2,i, χ

∗
3,i, θ

∗
1ðiÞ, and θ∗4ðiÞ for ymðtÞ are

shown in Figures 4–8, which indicate that all signals in the
adaptive control system are bounded, and the desired perfor-
mance is met.

5. Conclusions

For multivariable nonlinear systems with multiple uncer-
tain actuator faults and mismatched input disturbances,
a control method of adaptive fault and disturbance com-

pensation is proposed in this paper, with the following
main conclusions. (1) An adaptive algorithm is adopted
to establish the relation, and a set of adaptive fault com-
pensation controllers is constructed based on parameter
estimation. Then, a weighted algorithm is used to fuse
multiple controllers into a comprehensive controller, so
as to solve multiple uncertain actuator faults. (2) Under
the condition of uncertain fault, a new parametric design
method is adopted to obtain the parameter adaptive law
of the fault compensation controller, so that the desired
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performance of the closed-loop system can be guaranteed.
(3) The effectiveness of the proposed theoretical method
is verified by the simulation results of aircraft control
under fault and disturbance conditions. The problem of
fault compensation control for multivariable nonlinear sys-
tem with known parameters is studied in this paper. (4)
The proposed method can be further extended to solve
the problem of fault compensation of the system with
unknown parameters.
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